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FOREWORD

In the past three or four years, several methods (e. g., see References 1 and 2) have
been devised and used to remove ephemeris errors present in geoid height and vertical
deflection data obtained from the GEOS-3 satellite. The methods, though varying to some
extent, all have two common features. These are that 1) the satellite's ground track is
split into ascending and descending tracks and that 2) an a priori functional form is assumed
for the ephemeris errors along each track.

There are several shortcomings in this approach. First, no a priori estimates of the
ephemeris errors along each track are available. Lack of such information tends to make
the selection of the functional form haphazard. Secondly, correlations between time-
contiguous ascending and descending tracks are not accounted for. Failure to do so pro-
duces an unrealistic solution. Finally, discrete jumps in the ephemeris may be produced
along solution-area boundaries. With regards to GEOS-3, this latter problem has never
been addressed.

The technique described herein overcomes all of these drawbacks. It is believed that
the use of this technique will resolve the inconsistencies observed in previously processed
GEOS-3 data and enhance present processing of SEASAT data.

W. C. Palmer
Captain, USN
Commanding Officei
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INTRODUCTION

The orbit of either the GEOS-3 or SEASAT satellite is such that, over a long period
of time, the satellite's ground track repeatedly intersects itself. At many of these inter-
sections, there is a data point in the form of an observed geoid height difference. Since
high-frequency, temporal, and environmental effects have been previously removed from
the satellite's radar-altimetry measurements, these observed differences are attributed
to low-frequency errors in the satellite's ephemeris. 1 Let f(t) be the negative of the ver-
tical component of the ephemeris error and let 61j be the geoid height difference observed
at the jth intersection. We have2

f(tj) - f(tpj = , j = 1,2,...,N
• pi (1)

where tIj> tpj Vj and t > t for i > j.

In order to correct the ephemeris errors, we must find a solution y(t) which satisfies
Equation (1) either exactly or to some predetermined noise level.

Two facts complicate the situation. First, a bias in f(t) can never be detected through
Equation (1) since it gets cancelled out in the subtraction process. Secondly, even within
the equivalence class of all continuous functions with the same bias, the solution of Equa-
tion (1) is not unique. To overcome these difficulties, we seek an unbiased, low-frequency
solution.

Keeping this in mind, there are two ways of approaching the problem. We can either
assume a parameterized functional form y(t, a 0 , a1 , ... , an) for the solution and perform
some type of optimization over the parameters or we can first seek a discrete solution
yi = y(ti) defined at the nodes tl., tp., j=1, .. . , N and then fit a continuous function to the
result. Since no a priori infor at on is available regarding the functional form, we choose
the latter approach.

1Obviously, any long-wavelength errors will produce these differences. For simplicity,

throughout this report we will classify all long-wavelength errors as ephemeris errors.

2 The subscripts "1" and "p" are labels distinguishing later points in time from previous,

or past, points in time.

L . . . . i . " . . ... .: .. .. .i , "" " - " : . . . . . . .. .... "



STATEMENT OF THE PROBLEM

We can obtain an unbiased, discrete, low-frequency solution of Equation (1) by solving
the following problem. Minimize the weighted 3 variation

2N-1

J wi(yi.1 - Yi2(2)i=1,

with respect to the discrete function Yi = 1, ... , 2N subject to the constraints

Yj j I,...,N (3)

and the additional constraint
AR2N

Yi =0 (4)
i=I 1

where 4

Y= Y(ti)' yl Y(tl)' Yp = y(tp) , (5)

and

t < t <. < t < t (6)1 2 2N-1 7 6

Problem (2) - (4) can be simplified somewhat by solving Equation (3) for yl, and sub-
stituting the result into Equations (2) and (4). Before doing so, we define

=i if 3j 9 pj = i

k i = i = 1,.. .,2N , (7)1Ip jif lj3 1. i

and

6 = 0 j = 1,...,N (8)

The weights wi > 0, i = 1, ... , 2N-1 will be used to account for the uneven spacing
between intersections.

4 It should be noted that for every i there exists a j such that either 1 = i or pj=i

3
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A new equivalent problem can now be stated.

Minimize the weighted variation

1 I + i* - (9)
Si (Yki+ Yki  +1 i

with respect to the discrete function ypj, j = 1,. ., N subject to the constraint

+j=1 y p  j1

In vector notation this becomes minimize the quadratic function

f() T2 + c (11)

with respect to z, subject to the linear constraint

h(i) d T + e = 0 (12)

where 5

yp b d

-- 2

b A (a ) (13)
rn,n

Y PJJ b!.d N ,.,. .. . -. nN 1,...,

with

am,m WpM p W] +wm = 1,... ,N (14)

Since, from this point on, we will be dealing with the vector i, it will be essential to
remember that zj -ypj J 1, ... ,N.

4



am v'. fornit n (15)

where

w if p P -1 (16-1)
W 1 0Potherwise

w if Pm = p + 1 (16-2)

w 2 WO~notherwiser

A Wp i = In - 1 (16-3)
W3 = 0 m otherwise

A I if Pm r, + I (16-4)

4 0 otherwi se

A ~if I7 p -1(65

w = m n
0 otherwise

A w if Im = Pn + (16-6)
w6 = o otherwise

if Im =n I (16-7)

w6 = or otherwise

Wl if Im  + 1 (16-8)
8 n

0 ootherwise

bm= -Wpm - 1 1 - WPm 6Pm+ 1

- 6 m _ l ) m = 1 ,N (17)

ml m m m I m

5



2N-1

i=1

d m = 1,... ,N (19)

N

2 = 1. (20)

In the above definitions, =

60 0, 6 2N+ w = O, W2N = 0 (21-1)

and, in Eq~iations (14)'- (17),

W = 0 if Im = m + 1 (21-2)
m m

We now turn our attention to the solution of Problem (11) - (12).

6 jV



COMMENTS ON THE SOLUTION OF THE PROBLEM

We are confronted with the problem of minimizing the quadratic function 6

=1 T + -T-.f(2') : 'Az +- b22)
f M yz A!(22)

subject to the linear constraint

h(-') = d z + e = 0 (23)

This problem has a unique global solution providing that the matrix A is positivc definite
on the subspace M1 = :dT = 01 .7 The problem can be recast as that of minimizing
the Lagrangian

F(,) f() + h() (24-1)

7TA + A! + X(fT + e) (24-2)

with respect to the vector z subject to the constraint (23), and the solution can be found by
solving the linear system

F (',A) = 0 (25-1)

h(i) = 0 (25-2)

Specifically, we must find the vector z and the scalar Lagrange multiplier X which satisfy

F K]0(26)

This seems simple and straightforward, and is indeed, providing N, the number of

track intersections, is relatively small. Large segments of the track, however, may con-
tain thousands of intersections, making the direct solution of Equation (26) extremely

6 Here, the third term c has been dropped from f( ) since it has no effect on the solution.

7i

The positive definiteness of A is discussed in Appendix A.

7



difficult if not impossible. In order to have the capability to process such large segments,

we shun any direct method of solving (26) and select an iterative method, the conjugate
gradient-projection algorithm. In doing so, we will be able to take full advantage of the
fact that the matrix A is sparse (see Appendix A).

8



THE CONJUGATE GRADIENT-PROJECTION A LGORITIM

Conjugate gradient algorithms are well documented in the literature. References 3
and 4 provide particularly lucid treatises of the subject. These algorithms differ from
ordinary gradient methods in that at each step, instead of moving in the negative direction
of the gradient, movement is made along a direction Pk which is Q-orthogonal to all previ-
ous step directions P1, i.e.,

PkQP 0, 1 0 ... k-i (27

where Q is a symmetric, positive definite matrix. 8

For unconstrained problems, the direction Pk is obtained from a linear combination

of the present gradient k and the previous search direction Pk-'

P= +g kpk-1 (28)

The directional coefficient Ak is chosen to satisfy the conjugacy requirement (27).

For linearly constrained problems, the direction Pk is obtained as above with the
exception that the gradient is replaced by its projection onto the subspace defined by the

constraints-hence, the nomenclature gradient-projection. This procedure enables satis-
faction of the constraints at every iteration.

To introduce our particular algorithm, let z denote a nominal point satisfying Equa-
tion (23), let z' denote a varied point, and let p denote a search direction which, when
multiplied by the stepsize a, leads from the nominal point to the varied point. Then, by

definition,

Z = Z + ap (29)

Furthermore, let the present search direction be related to the previous search direc-

tion 6 via

zF.~ (30)

Equations (29) and (30) contain three unknown parameters - the Lagrange multiplier X,
the directional coefficient P. and the stepsize a. We will determine these parameters
so that 1) the constraint (23) is satisfied at every iteration, 2) the present search direc-
tion is A-orthogonal to the previous search direction and 3) the maximum amount of de-
crease in the function f(z) is attained at each iteration.

Vectors , 0, 1, ... , k satisfying Equation (27) are said to be conjugate with respect

toQ.

9



For the constraint (23) to be satisfied, we must have

= 0 (31)

Since we have assumed satisfies (23), this implies that

Ah(z ) [ h h'z) : 0 (32-1)

'Z 'd - + e) (zTd+ e)] = C
- 1 (32-2) 4

= __d 0 (32-3)

: T :0(32-4)

Substituting Equation (30) into Equation (32-4) produces

+ 3^)Td 0 (33)Zd

Providing that we have forced p d to be equal to zero in the previous iteration, this
reduces to

F= 0 (34-1)

' r

(Al + 6 + A)Td = 0 (34-2)

We now choose X so that Equation (34-2) is satisfied. We have

A -(A2 + b)Ta/aTa (35-1)

S_((35-2)

N
- 1 : fzkz (35-3)

To prevent the above logic from breaking down, on the first iteration we set 1 = 0.

10



For the present search direction p to be A-orthogonal to the previous search direction

pwe must have

= A 0 (36)

Coupled with Equation (30), this implies that

-F(,) + TA 0 (37-1)z

or

Z (37-2)

To achieve the maximum amount of decrease in the function f(;) at each iteration we
first note that with X, given by (35-3),

f(Z') =_F(z ,X) (3S)

Furthermore, since both ?, and #3 have been specified, F(r, , is a function of a only.

F(o.) = F(j' x) (39-1)

= F( + Ai,N) (39-2)

+ a $)A( + p~
+7b (z ii (zA) + c P ) + el (39-3)

(2 lAA)a + [ Az + b+ Nd) -

+bT l-T (afT + e) (39-4)

- (l ,TA ) + FIK2,,') , + F(0) (39-5)
z

Minimizing IEquiation (39-5) with respect to a , we have

FA P P, + Fi(i,) (40)

SO that thLe optimIUM stepsize is given by



Note that for a minimum we must have

F AO - 0 (L2

which will always be satisfied if A is positive definite n the pUI)SpMIC' .11 (IHef'f ldiu
tion (32-4).)

The bare basics of the algorithm have now been derived. .ivn\ aIditional prfertic,
of the algorithm exist. Perhaps the most important is that, when applied to :I (uadr'atiC-
linear problem such as (22) - (23), convergence is assured in at most N-(I itcnitiu,., \h, -
q is the dimension of the constraint h. Other properties, such a aldditional ,?lth,,wa:lit\
properties, will not be discussed here. \Ve %vill state, however, that dIue to tlhIk idlditi n t:
orthogonality properties, Equations (37-2) and (41) can be reduced to

6 Q(VZ, )/Q(z,) 1:;

and

, Q(-z,X)/"pT p (-14)

where

Q, : FT(zz",)F ,) (45)

The symbol " "refers to quantities computed in the previous iteration.

12



SUMMARY OF TIlE ALGORITHM

The con iLl"atC gradient-projection algorithm has now been fully specified. The matrix
A and the vectoir ) need to be computed only once. After this is done, the algorithm is:

Step 1. Selet a nominal [( pint ,. such that

h( ) dTz + e = 0 (46)

Step 2. Compute

f 2() = Az + b (47)

Step 3. Compute

N z k (48)

k=.

Step -1. Compute

Ff () + xd (49)
z z

Step 5. Compute

Q~z<.) F~z\)FX)(50)

Step 6. Check for convergence. Is

< _ (51)

where c is some small, preselected number. If (51) is satisfied, stop; if not, proceed

with step 7.

Step 7. Is the iteration number equal to N-q? If so, stop; if not, proceed with step 8.

Step 8. Compute the directional coefficient 0. If this is the first iteration, 0 = ; other-
wise

9 The matrix A and the vector b require 6 x N storage locations.

13



r.

S = (~,)/Q~,~)(52)

Step 9. Determine the search direction

p= + (53)z

Step 10. Compute the optimum stepsize

Q(z,N p A (54)

Step 11. Compute the varied point

- + 0' (55)

Step 12. Replace the old nominal values 7, P, and Q(z, X) with the new nominal values
S, and Q(z,), )

: z' (56-1)

P P (56-2)

Q(z=) Qoz", ) (56-3)

and proceed to step 2.

Once convergence has been attained, the remaining half of the ephemeris errors are
computed via Equation (3).

IHi



ON CORRECTING GEOID HEIGHT ERRORS RELATIVE TO
A REFERENCE SURFACE

This section deals with the situation in which segments of he satellite track have been
previously corrected and it is desired to correct the remaining segments relative to these.
In such a situation, any of the nodes yj or ypj falling in a previously corrected segment
are deemed to be errorless. Let 1o be the index set of the errorless nodes. Then

Y = 0 for 1 o (57-1)

ypj 0 for pj f, (57-2)

Since

Yj 61 j = 1,... ,N (58)
3 3 3

we must have

=- l for 1i . I0 p 1 (59)

Let us now see how these constraints, namely Equations (57-2) and (59), affect our
original problem. Refer to Equations (9) and (10). We want to minimize the weighted
variation J subject not only to the constraint (10), but also to the additional constraints
(57-2) and (59).

At this point, the straightforward approach would be to substitute Equations (57-2)
and (59) into Equations (9) and (10). This would create a simpler, equivalent problem of
lower order. Unfortunately, it would also create a complicated indexing problem.

Without this substitution, Problem (11) - (12) becomes minimize the quadratic function

f ) z Az + b z + c (60)

with respect to , subject to the linear constraint

h(-) = cmz + g =0 (61)

where z, b, c, and A are defined as before and where the N x (mv1)-matrix C and the (m-l)-
vector g are given by

15
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1 0 ( 0. 0

1 0
I 9.

0

C0' gi 6

0 0 9j

1 0

with
g = I ji if l II and pji ,:;

9i j i f Pi j [

I if P.Li

Here, m is the number of errorless nodes. The first column of the C matrix contains all
ones; the remaining columns each contain onl, one nonzero element whose value is one.

Problem (60) - (61) has a unique global solution providing that the matrix A is positive
definite on the subspace M2 7': CTz = 0 . The problem can be recast as that of mini-
mizing the Langrangian'

0

F(z,,,) f(z) + ,rh(z) (64-1)

1 --T T  + -6T  + T(cT + ) (64-2)

with respect to the vector .subject to the constraint (61), and the solution can be found by
solving the linear system

6= (5-1)

(65-2)

10 Again, the third term c has been dropped from f(z) since it has no effect on the solution.

16



for the vector i and the vector Lagrange multiplier X'

Referring back to the two previous sections, we can trace the modifications to the con-
jugate gradient-projection algorithm which will be required to solve the system (65). We
have:

p -Fi(z,X) + (66)

instead of I.:quation (30);

cT 0 (67)

instead of E'quation (32-4);

TC (-F-((z,x) + 3P) = 0 (68)

instead of Equation (33);

CT(Al + + C) 0 (69)

instead of Equation (34-2);

= -(CTc)-cT(A i +) (70)

instead of Equation (35-1);

+-4) +(71)
zz

Instead of Equation (49).

Since CTC is an (m+l)x(m+l) -matrix, the main concern now is to try to simplify
Equation (70) by solving for the inverse of

- - - -- -- -- --

1 Ko......

1 1 0 . . . . . 0

1 ~0

C= • (72)

.1.. 0

17



analytically. We need to find- , - , and W such that

(73)

Expanding we have

yN + v 1 (74-1)

NV + UTW  6T (74-2)

+ 0 (74-3)

T + W I (74-4)

Equations (74-1) and (74-3) imply that

1

S N -m (75)

- N m m " (76)

while Equation (74-4) implies that

N-rm+ 1 1 1... .
1 '

II
W I Uv N -n. (77)

1..... i N- m + 1

18o

,- . ., °°- .



Thus
-i-I -1 . . . . -I

-1 N-m+ I I

-1 1 + 1 . 1 . . . .-N +

( C.(78)cTc)-

-. .1.. . . . . . .. N - m + 1

Returnirng to Equation (70) we have that

N

j~ifT f )
z.i

fz (-)

J

( +(

"*f 
.. - - "



so that

r N

z. *-z

-- - T f (~ + (N- (80)I

N mmj~

fN z - f z (-Z)) + (N - m)fzj(Z)

Thus

N-rn f z3

2~ 1 f (*z (81-2)

3 1 Z*

2

M~l z m
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Substituting this latest result into Equation (71) yields

z  (z,) - = -(f ( ) + )

Z,F (z ) -(fz () +

F z(2,- 1 0

Zn copcnntto

F + (82)

FF (z,j )

21

F (F) (-2) z()+ x1) i 0ad8

Fzj if 1ljIl0 or pj~lo

This completes the modifications to the algorithm.
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SUMMARY OF THE NEW ALGORITHM

After computing the matrix A and the vector b, the new steps are:

Step 1. Select a nominal point z such that

) - +g 0 (84)

Step 2. Compute

fji Ai + - (85)

Step 3. Compute

I f(z) (86)
S N-rm zJ ~J

Step 4. Compute F (z, X) according to

f z + if 1. 1 T and pj 0F (z '; ) ( (87)

if 1 £ I or Pi c I

Step 5. Compute

T , - , .- -.

Q( F) = F T, (88)

Step 6. Check for convergence. Is

( )/iT < E (89)

where e is some small, preselected number. If (89) is satisfied, stop; if not, proceed
with step 7.

Step 7. Is the iteration number equal to N-q? If so, stop; if not, proceed with step 8.

Step 8. Compute the directional coefficient ft. If this is the first iteration, j3 = 0; otherwise

: = Q( ,-)/Q(i, ) (90)
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Step 9. Determine the search direction

= -F Z, ) + p (91)

Step 10. Compute the optimum stepsize

Step 11. Compute the varied point /xTAp (92)

Z= z + (93)

t 2. Replace the old nominal values 2, b, and Q(z, X) with the new nominal values
z , p, andQ(z,)

z z (94-1)

P=p (94-2)

Q (z ,) Q ( ,) (94-3)

and proceed to step 2.

It should be noted that when 10 is the null set, the new algorithm automatically reduces
to the old algorithm.
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SELECTION OF A NOMINAL VECTOR

In deriving our algorithm, we have assumed that the nominal point satisfies Equation
(84). This assumption necessitates that we start the algorithm with such a vector. Al-
though any such vector will suffice, we might as well use our degrees of freedom \Wisely
and select a nominal that not only satisfies (84), but also produces the desirable property
that the initial discrete function Yl, y 1, . N is of minimum modulus.

To accomplish this, we minimize

N
j (Y 2 + YP) (95)

j=1 J

with respect to the vector , subject to Equation (84). Equations (84) and (95) can be
rewritten as

N
j I Z + 6 + li (96)

and

N N

p 2 1 - 0 (97-1)

Ypj - for Y1cI 0 ,Pj 4 I 0  (97-2)

= 0 for (97-3)

From Equations (97-2) and (97-3) it can be seen that we only need to perform our minimiza-
tion over those Yp3 for which 1j 4 10 and pj 4 Io, subject to the single constraint (97-1).
Taking the partial'of the Lagrangian

N N N

L V + )2 + 8+ )+ 1 (98)

j=1 j: y =

with respect to ypi, lj 10, pj 4 10 and setting it equal to zero produces

25
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- +2ypj + (0 j = 1,...,ht (99-h
P j

or

_ L = + I = 1,.. ,N (,.9--2
2 Yp+ 2 1 j N

.j lj.I3

while Equation (97-1) can be rearranged as

(Ypj + ) 0 (100)
j2=1

Substituting (99-2) into (100) results in

J (.+ ) l )  = - --( N - I)

Using Equations (97-2) and (97-3) we have

(i" imL(102)

where

pj,-I Ij( 1(,

Placing this result into (99-2) yields

I. +j = 1, . N

ypj - 2 N -I + -41C (104)

Thus, our optimal nominal zj ypj, j 1, .. N is defined via Equations (97-2), (97-3),
(103) and (104).

26
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When 10 is empty, Equation (104) reduces to

y j (105)
Pj 2

as one would expect.
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NUMERICAL EXAMPLES

Test Problems

The conjugate gradient-projection algorithm was developed into a 'rnj)uter-irorarmed
subroutine \vritien in FORTRAN V. The algorithm was then aipplied to seve,al ttst problems.
In each case, the nominal function -z was selected via Equations (97-2). (1)7-3). (! 1:o and
(104). Convergence was defined by

V/'Q(-z,)/_T < 10-6(106)

and double precision arithmetic was used in the calculation of the optimum stepsize and
the directional coefficient 13. The algorithm was terminated whenexer Inequality (106) was
satisfied or the number of iterations reached N-q. 11

For these problems, the ephemeris errors were represented by various sinusoids. In
each case, the observations 61, j = 1, ... ,N were corrupted by Gaussian noise \with a sigma
level of 0. 01 V (IT of the maximum ephemeris error) and the average number of obser'a1-
tions contained in the shortest wavelength of the sinusoid was recorded.

Three different weighting techniques in combination with three different spacing schemes
were used. The weighting techniques were:

(1) Equal weighting in which all of the weights wi, i = 1, ... , 2N-1 are equal

(2) Inverse weighting in which w i  ti = , 2N-1

where t is a scaling factor and

(3) Inverse square weighting in which w i = =r

scaling factor. (ti+i-ti)2 , = 1, ., 2N-1 where again is a

The spacing schemes used are given below.

11
Theoretically, the algorithm has to converge in at most N-q iterations. However, due
to round-off errors, especially in the calculation of the A-orthogonal directions, it is
possible to impose a convergence criterion that is tighter than the algorithm is capable
of achieving.
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Tahle 1. SpiCintg schioes

scaled T1ilm,

Scheme 1 Scheme 2 Scheme8

.3 .1.20
.4 .2 .25
.5 .5 .30
.6 .8.3
.7 .9 .40

1.3 1. 1 .15
1.4 1.2 .5
1.5 1.3 ~
1.6 1. G
1.7 1.9 6
2.3 2.1 2.20
2.4 2.2 2.23
2.5 2.5 2.830
2.6 2. 8 2.35
2.7 2.9 2.4J

3.31 2.45
3.4 3.2 2.50
3.5 3.5 .355
3.6 3. 2. 60
3.7 1. 92.6

* 41.20
41.25
1.30)

The ephemneris ei rors wor Ie as follows-

Problem 1: f(t) sin 2 t(107)

Problem 2: f(t) 2 (siri -t + sin (108

Problem 3: f~~--.in -t (I (10))

Problem 4: ft sio 4j 1 II

3o )



Problem 5: f(t) = -[sir, -t + sin tl (lii)
2

0 for t ..t I )

Problem ;: f(t) =  sin- f (112)

In ean'h tnse. 25 intersections w'ere considered. The or(he r(-d >t'.< tI I 'I
and I. : 1 . 25 rema ined u nc hanged 'i t

Ipj' 1 2. . 25 13 , 5, S, 1,2,6, 4 ,7, 9 ,12, l , 1 P , ,I 2

(113)

25,24,23,26,29,31,32,35,34,)3

and

Il j 1 25} 10 ,13 ,15 , 16 ,19, 20 , 21 , 27 , ? 0,3)3,36 ,37,,

38,40,41,42,43,44,45,46,a7,4,49,501 (11-)

In Problems 1-5, the set I0 was empty. In Problem 6, it was assumned that the track had

previously been corrected from time t = 0 to t - t25 anti that there was a huge time gap
between t25 and t 2 6 . These conditions were simulated by defining the ephemeris error

via Equation (112), setting the weight w 25 equal to zero, and dUfining L) 'i: i - 1,

25 .

The results for these problems are illustrated in Figures P-lo. l eroblem I is associated

with Figures 1-3, Problem 2 with Figures 4-6, Problem 3 with Figures 7-9, etc. In most
cases the conjugate gradient-projection algorithm required less thzn the maximum number
of 24 iterations to converge. The plotted solutions represent the sum of the unbiased esti-

mate obtained from the algorithm plus the bias in the true epheneris error. N.otc that as

the average number of observations per shortest wavelength increases, so (loes the accur-
acy of the solution. At 50 observations/wavelength, the accuracy is down to the noise level

of the system. In some cases, depending on the spacing scheme, this level can )e achieved

with 25 observations/wavelength. Even with as few as 5 obser\vations/wavelength the
ephemeris errors can still be substantially reduced. At this point, however, relative to our
sampling rate, the ephemeris errors begin to look like high-frequeney errors. Since the

conjugate gradient-projection algorithm produces a low-frequency result, the generated

solution may be of lower frequency than the true one, as evidenced in Figure 14.

Not to be overlooked is the fact that the algorithm is relativelv insensitive to the weigh-
ting scheme employed. Furthermore, this insensitivity increases ns the number of obser-
vations per wavelength increases. Because of its performance over :i ran' of OhsOr'vation
frequencies, inverse weighting was deemed to be superior to invrse-s,1 ta r(, weighing.
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SEASAT Geoid lie ight Daita

Moving front "AlIice inl \\ flnderIa in to the real \\oo'ldl . in ana lvs is (4 the fIr-t 3!):;
revolutions of SEAS.\'I was w-(nducted. Front til, inlitiail semenit (it the ae t trek,
good geoid height informaitionls Oht:iiil( during 1!5 o)f the reC\ OdUt ions . Front tins., :,tter
group Of reo ut,1601-, 25G-1 n 121(1n- track iflt( rscctih ns clUntilin" ft' g(h iwCe e IIC p. Th e h,
conjuogate gra(licflt-pr)olecti i(,l gor it1111 \".:I" thein iH1) led to, the resulting 51; gepo)id Iv highi
differences. Since timec inhorn'I'ation 1had I)CCn 1prc(\ iouslIV trenof\ed fromn the data inec
weighting hased on revolutionl 1nl11im('l m11( tractiofls It erof \vas enmp1l)vd The Irti
required 8411 iterVat ions to ( owe rge,

A cubic spin e with eveni -sp u n 1Io \\:Ia then fittedl ill the les sot: eleno to
the' geoid-he igt-err-OV ouLtpuLt o4 the !11oin The sjpilno reiormsenlted :os a i meat
c nibination of 5sOIinc ha-,il t'Mi~tiootiS :1nd a1 osiiio(iivI'o s olo )It (io ftjijiont- Wa:s
obtained via a sinula ilue ol(,tionpostin (S\D't. Spuril'ous 0(sciins \VeI' (LMinj)ed( 1A
zeroing out an appropriate ntin11hL'r ()t the s iuu~ ius. trzansforniattion \\-ia s 'drowl
p~rior to entering the SVID so thazt. whoneve01 rtHICem 'N2as nin1-ur17I(jue . the 'ThI Ii
curvature 12 solution \\as iohtaiined (5(0 -fcc-oS

The resultsi for revolutions 145 throughi 1 51. 2017 thitoUg'll 21; 28-i thriough 2.1hi, and 274
throughi 2801 are given in Figuires, 19-24, yes pectek e . FVor t hi se segmnent ;. tHeie rn rro
of the spi ine fit ranges between I-, and 2(l cent imeters.

In order to evatuate the aCCu racyv of the get()i it gt c iot 1n fictitU ous eo id heightl
error was ,,;sunied . As a function iof the( revo'lution numlier . tils fictitious eri(r Al
defined b~y

f s i sn 37T + s i n 7r J(
This particular function was choSenl be'cause it'- freqc neylC\ content is sim-ilar 1(o that ichs-erv
ccl in Figures 19-22 - the highiest frequency p resent hie ing approxinMely 1', cycles per
revolution.

After corrup~ting Equation (117o with Gauss ian nioise at a sigrnia level of 19 cent imeters.
fictitious avoid height differences were conllputedl at the grouLnd-track intersections. These
differences were then fed into the conjugate grad ient -project.ion alIgo rithmn a s before, a
cubic spl ine was fitted to the geo id-height-error output of the algorithm. A comiparison
between this spline fiL and the fictitious gecoid heighit error is given in Figures 23-26.
This comparison shows (for the revolution spans coins idered here) that Over those segments
of the satellits 's track where no geoid height data exists, (over land), we can obtain a1n
extrapola ted'~ estimate of the altitude error to an rrms-accuracy of 22 centimeters
(RMS1). Over these segments containing geoid height data (over the ocean), we can
obtain an interpolated estimate of the altitude error to an rms-accuracy of 15 cent-
imeters (BRMS2).

IZThe 1.2 norm (If the smeond dcerivcali ye , nasmilizeidl.
13 Interpolation hetween data sets.
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SUMMARY

A new technique has been developed for correcting satellite ephemeris errors indirectly
observed from radar altimetry. This new technique differs markedly from previous methods
in that a different problem is posed and a different type of solution (discrete as opposed to
parameterized-continuous) is obtained. Specifically, a conjugate gradient-projection algo-
rithm is used to find the unbiased, discrete function of minimum weighted variation which
produces the geoid height differences observed at the satellite's ground-track intersections.

It is felt that this new procedure represents a substantial improvement over previous
efforts. First, it accurately models reality by retaining the concept of one. tim.?-continu-
ous, satellite ground track which repeatedly intersects itself. Secondly, it takes into
account correlations between time-contiguous ascending and descending tracks. Thirdly.
it allows for an a posteriori selection of a functional form for curve fitting purposes.
Finally, it requires a minimum amount of computer storage due to the sparseness of the
coefficient matrix of the system to be solved.

It has been demonstrated that the method is accurate. Based on the analysis con-
ducted herein, it appears that an altitude correction to an accuracy of 20 centimeters
rms is possible.

The real beauty of the technique, however, lies in the fact that it is a general mehthod
that can be used to reduce any time-dependent, low-frequency error present in network-
type surveys (e.g., oceanographic shipboard and airborne surveys). In the near future, the
method will be employed to remove the diurnal variation present in magnetic surveys as well
as the nonlinear gravimeter drift present in gravity surveys.
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APPENDIX A

Properties of the A Matrix

The A matrix defined in Equations (13) - (16) is symmetric and sparse. The sparse-
ness is due to the relationship between the sets Pj =i, ... , N and I I.-j 1 ... , N •
This relationship is such that, in any given row (or column) of the A matrix, there exist
at most 5 nonzero elements.

The matrix A is also of rank N-1. This is due to the nature of and the relationships
between these nonzero elements. From Equation (14) it can be seen that each diagonal
element is equal to a sum of weights and is, therefore, positive. Furthermore, from
Equations (15) - (16) it can be seen that each nonzero off-diagonal element is equal to the
negative of a sum of weights and is, therefore, negative. Not so apparent is the fact that
the sum of the absolute values of the off-diagonal elements in any row (or column) is equal
to Lhe diagonal element in that row (or column), i.e.,

N N
a M' I!a rnn = Y a n~ m = 1,... ,N (A -1)m'm n=1 = " " "

n~m nm

Theorem 1. The matrix A is positive semidefinite.

Proof: From Gershgorin's Theorem, every eigenvalue X of A must satisfy at least
one of the inequalities

N

-am~lY amn m = 1,... N (A -2)m,m - a m,n" "
1 1 1n=1

nm

Substituting (A-i) into (A-2) yields

- a < a m = 1,... ,N (A-3)' am,m - m,rn

which implies that

0 < ; _ 2a m' m  (A-4)

Hence, A is positive semidefinite.

Theorem 2. The matrix A is positive definite on the subspace M1  x: x Td= 0I

Proof: A is positive semidefinite (and thus can be split into T A where A is the square
root matrix). Hence, we only need to show that for nonzero x E M1 , Ax xA.
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Suppose that Td 0 and A x = .Then C~ N(A), where N(A) is the null space of
A. Now d e N(A) since A d = 0 and N(A) is of dimension 1 since A is of rank N-i.
Thus x =ad for some a / 0. This implies that Td = ad = aN / 0 which con-
tradicts the fact that i z M1. Hence, A is positive definite on M1 0

Theorem 3. The matrix A is positive definite on the subspace M2 {X: CT =

Proof: M2 C M1
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